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ABSTRACT 
In this paper we derive the capacity of Pulse Position Modulation (PPM). on a general soft output, memoryless 
channel, and evaluate the capacity formula for a variety of optical channel models, including AWGN, Webb [I], and 
Webb plus Gaussian distributions. Unlike a typical RF link, the optical channel has correlated signal and noise, 
complicating the statistical model to  the point that capacity and code performance cannot be summarized by a 
single SNR parameter. Nevertheless, we are able to define a small set of fundamental parameters (two for AWGN 
and three for Webb) which are sufficient to determine the capacity. Numerical results indicate that over a wide range 
of operating points, a single fundamental parameter dominates the capacity calculation. 

A second contribution of the paper is the description of the relationship between the fundamental parameters and 
a multitude of physical parameters that describe the laser, channel, and detector. Using this relationship and the 
gradient of capacity, the sensitivity of capacity with respect to each fundamental and physical parameter is derived. 
This enables engineers to focus laser and detector development efforts in areas that will result in the largest capacity 
increases. 
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1. INTRODUCTION 
The problem of determining the capacity of Pulse Position Modulation (PPM) on a soft output channel is motivated 
by the deep-space optical channel. NASA has considerable interest and hope in this channel as a means to deliver data 
to Earth faster, more reliably, and with less energy expended. Recent research at the Jet Propulsion Laboratory has 
led to the consideration of optical communications systems that use a Q-switched laser, Pulse Position Modulation 
(PPM), and an Avalanche PhotoDiode (APD) detector, and it is important that we be able to  define the ultimate 
performance capability of this type of channel to provide a foundation on which mission designers can build. 

We consider the communication system shown in Fig. 1. A k-bit source U = (Ul,  . . . , Uk) E (0, l}k is modulated 
with (M = 2k)-ary PPM to  yield a signal X = (0,. . . , O , l , O , .  . . ,0) E (0, l}M, which contains a single one in the 
position indicated by the binary representation of U. The transmission channel is a binary-input unconstrained- 
output memoryless channel. One use of the overall PPM-symbol channel consists of M serial uses of the binary-input 
channel, and produces the received vector Y = (Yl, . . . YM) E R’ . This vector is then sent through an invertible 
transformation -+ 4,l 5 j 5 M, to produce V = (h, . . . V’) E R’. The conditional probability density 
function (pdf) of & given X i  = 0 or 1 is denoted by PO(.) or p l  ( a ) ,  respectively. 

2. CAPACITY OF SOFT OUTPUT PPM 
The capacity of the system in Fig. 1 is given by the maximum mutual information between V and U: 

C = max I ( V ;  U) = m a  I ( V ;  X) bits per channel use, 
P W )  P W  

where the second equality follows because X is an invertible function of U. By “channel use” we mean one use of 
the PPM-symbol channel. The PPM modulator can be viewed as an encoder producing the M = 2k codewords 
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Figure 1. Channel model for PPM signaling. 

{XI,. . . , XM) of a (2k, k) orthogonal code, where xj is a vector of length M containing a one in the j t h  position. By 
the symmetry of orthogonal signals, capacity is achieved with an equiprobable distribution on X, i.e., p(X = xi) = 
1/M for each i, 1 5 i 5 M .  Thus, 

= = 
dv bits per channel use. 

a p ( V  = VlX = Xj) 1 
The elements of V are independent, and consequently, 

A4 M 

P ( V  = VlX = Xj) = l”Jp(vi = V i l X  = Xj) = Pl(Vj) po(V i ) ,  
i=l i=l,i#j 

The bracketed term in Eq. (1) can be expressed as 

where L(v) f p1 (v)/po(v) is the likelihood ratio of receiving statistic w on the binary-input unconstrained output 
channel. Thus, the capacity in Eq. (1) can be rewritten in terms of the likelihood ratios of the M slot statistics: 

1 C = E log, [ z:;, ] bits per channel use 

where the expectation is taken over V, with VI having pdf P I ( . )  and vj having pdf P o ( . ) ,  j > 1. Note that, as expected, 
Eq. (2) gives a capacity near log, A4 bits per channel use when the channel is high-quality and the likelihood ratio 
of VI dominates the sum of the other likelihood ratios. Eq. (2) can be numerically evaluated using standard Monte 
Carlo techniques . 

3. CAPACITY FOR SPECIFIC STATISTICAL CHANNEL MODELS 
For each statistical channel model below, we define the invertible transformation Y + V in Fig. 1 to normalize the 
channel and minimize the number of variables. Then we determine P O ( - ) ,  P I ( . ) ,  and L(-), and plug the expressions 
into the capacity formula in Eq. (2). Throughout, mo, ml and a:, a; denote the means and variances of yj during 
nonsignal and signal slots, respectively. Two fundamental parameters used in all models are the SNR parameter and 
excess SNR parameter we define, respectively, by 
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Figure 2. Capacity of PPM on AWGN channel, versus symbol SNR, p. 

3.1. AWGN channel model 
Despite substantial flaws, the AWGN channel model has been used extensively in the optical communications litera- 
ture [2-61, and it is the current model used in free-space optical communications link budget software at NASA [7]. 
The AWGN channel is defined as having Gaussian distribution N(rn1, a:) when a one is sent, and N(rno,a,") when 
a zero is sent. We let 4 (5 - rno)/ao, so that We write these conditional pdfs as #((z - ml)/al)/al and 
4((z - rno)/ao)/ao, where $(x) 4 -&e-s2/2. We let V, 4 ( y j  - mo)/ao, so that 

P1 (9, the Pdf of vi, is N (  fi, 1 + P/Y) 
PO(.), the pdf of v j ,  is N ( 0 ,  l ) ,  j > 1. 

Thus, 

The capacity is given by Eq. (2), which becomes 

The capacity of 256-PPM is shown in Fig. 2 as a function of p, for various values of y. As y 3 00, we have 01 + 00, 
and the signal and noise become independent. That is the usual situation in most RF channels, but distinctly not 
usual for most optical channels, where the signal and noise are correlated. Nevertheless, in the case when 01 = 00 
(i.e., y = 00), the capacity in Eq. (5) simplifies to 

M 1 bits per channel use. 

The capacity of M-PPM, M = 2,4,8,16,32,64,128,256, is shown in Fig. 3, when 01 = 00. 
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Figure 3. Capacity of PPM on AWGN channel when 01 = 00, versus symbol SNR, p. 

3.2. Webb channel model 
A Gaussian model of an Avalanche PhotoDiode (APD) detector output under conditions of negligible background 
radiation and low APD bulk leakage currents leads to substantial underestimates of optical APD gain and overesti- 
mates of system bit error probability [2]. A more accurate approximation of the optical channel statistics governing 
yZ has been given by Webb [l]. We write yi - W(m, 02, S2) to indicate that yZ 4 m + OW, where W is a zero-mean, 
unit-variance Webb deviate with pdf 

1 
p,(w; s2) -(I + w / s ) - ~ / ~  exp 6 

The pdf of the unnormalized statistic yi ,  evaluated at yi, is pw((yi - m)/a;  S2)/a. Unlike the Gaussian distribution, 
the Webb distribution is not determined solely by its mean and variance; it also depends on the “skewness” parameter 
6. Note that as S + 00, the Webb distribution reduces to the normal distribution. See Fig. 4. 

The Webb channel is defined as having Webb distribution W(m1, a;, 6:) when a one is sent, and W(m0, a:, 6:) 
when a zero is sent, along with the constraint that o, ” /~ t  = s,”/S?. As in the AWGN channel, we let 4 4 ( y 3  -mo)/oo, 
so that 

A 2 6; - Sg. The capacity is given by Eq. (2), with 

3.3. Webb Plus Gaussian channel model 
Follow-on electronics in a receiver introduce thermal noise to detector outputs. This is accounted for by modeling 
the system with a Webb plus Gaussian distribution. We denote this by writing yZ - W(m0, o:, 6:) + N(O,o:) when 
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Figure 5. Capacity of PPM on Webb channel) versus symbol SNR, p. y =?, A =? 



Figure 6. Capacity of PPM on AWGN channel when a1 = U O ,  versus bit SNR, P b .  

a zero is sent and E - W(m1, a:, 6:) + N ( 0 ,  a:) when a one is sent. These conditional pdf’s are given by the 
convolution of the Webb and Gaussian pdf’s: 

” 
AWGN pdf at y - x Webb pdf at x 

where I E (0 , l )  indicates the condition that either a 0 or a 1 was sent. 
The Webb Plus Gaussian channel is defined as having Webb distribution W(m1, a;, d;) + N(O,ai) when a one 

is sent, and W(m0, a i ,  6:) + N(0 ,  a i )  when a zero is sent, along with the constraint that cri/a; = d:/S;. We let 
vj 4 i  (5 - mo)/ao, so that 

where A 9 6: - 6:, and P ai/ag. The capacity is given by Eq. (2), with 

4. CAPACITY SENSITIVITY TO PHYSICAL PARAMETERS 
An optical link is defined by dozens of physical parameters involving the laser, telescopes, atmosphere, and detector, 
but these physical parameters affect capacity only in how they affect the values of the three fundamental paramters. 
The physical parameters we consider are: 

Laser and Modulator Parameters. Laser and modulator parameters include the optical frequency u, the width 
of the pulse slot T,, the required deadtime between pulses T d ,  the modulation extinction ratio aer, and the 
order M of the M-ary Pulse Position Modulation (PPM) signal. 
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Figure 7. Capacity of PPM on Webb channel, versus bit SNR, Pb.  y =?, A =? 

0 Detector Parameters. Avalanche PhotoDiode (APD) detector parameters include the quantum efficiency q, 
excess noise factor F ,  gain G, noise temperature T, load resistance Rh, bulk leakage current Ib, and surface 
leakage current I,. 

0 Channel Parameters. Channel parameters include the mean number of background photons incident on the 
detector f i b ,  and the mean number of pulse-induced photons incident on the detector fi,. 

Some other parameters can be expressed in terms of those above, but will not be used explicitly in this article. For 
example, the ionization ratio kef  is related to F and G by F = kef2 + (2 - 1/G)(1 - k e f ) ,  the noise equivalent 
one-sided bandwidth B is set equal to &, and the optical frequency u only matters in how it affects f i b  and fi,. 
And for most lasers the modulation extinction ratio has a negligible effect, being on the order of lo6. Hence, in the 
Femainder of the paper, u, Td, and aer will be ignored. 

4.1. Relationship of Fundamental and Physical Parameters 
The capacity of soft-decision M-ary PPM on the Webb+Gaussian channel is a real-valued function C(a), where 
a = ( p ,  7, A, p) is the vector of fundamental parameters. The fundamental parameter vector a can be expressed in 
terms of physical parameters 

P = (7, f i 8 ,  f i b ,  F, Ib, I,, Ts, T ,  RL, G )  
by 



Expressions of parameters mo, m ~ ,  og , a;, oi, d:, d; in terms of of the physical parameters can be found in, e.g., 
[2,8-lo]. 

4.2. Capacity Sensitivity 
The sensitivity of capacity to  a fundamental or physical parameter x at operating point a is defined as the partial 
derivative of the logarithm of capacity with respect to the logarithm of the parameter: 

d log C( a) Capacity sensitivity with respect to  x 
dlogx * 

The logarithm is used to  emphasize the sensitivity of the parameter without regard to the units in which the parameter 
is measured, and it allows us to  effectively compare the relative sensitivities of various parameters. This is in contrast 
to the linear partial derivative E, which has one value when, for example, x = T, is measured in nanoseconds, and 
a value one billion times smaller when x = T, is measured in seconds. If x is a physical parameter, we may express 
the sensitivity with respect to x at operating point a as 

i.e., the normalized dot product of the gradient of C(a) and the vector which forms one of the columns of the 
Jacobian matrix of a: 

To determine the sensitivity of capacity with respect to one of the physical parameters, we need only determine the 
gradient of the capacity expressed as a function of the four fundamental parameters and form the inner product with 
the appropriate column of J(a). 

4.3. Numerical Results 
As an example of this calculation, we consider a Webb plus Gaussian channel model, a strong signal, strong back- 
ground, and optimized APD gain. We use an EG&G SliK APD detector with physical parameters Q = 0.38, 
F = 2.42572, I b  = 40fA, I ,  = 2.00nA, T = 300K, and RL = 179.7kR. It has been shown [11,12] that for this set of 
parameters, G = 65 is the optimum gain for hard-decision detection of 256-PPM. This is also a good estimate of the 
gain which maximizes capacity on the soft-decision channel, which turned out to be G = 59. We use a Q-switched 
Nd:YAG laser modulated with a slot width of T, = 31.25ns. A high signal strength fi, = 100 is incident on the 
detector, and a high background level f i b  = 100 is also present, which corresponds to reception on a clear, sunny day. 

Plugging these parameters into Eq.s (9-12), it follows that p = 13.7, y = 15.7, A = 45.3, and p = 0.145. For 
computational complexity reasons, the likelihood function L(w) for these parameters was precomputed, and is shown 
in Fig. 8. Using the finite differences method, the partial derivative of capacity with respect to each fundamental 
parameter, i.e., the components of the gradient, were computed. These components, when normalized as in Eq. (13), 
give the capacity sensitivity with respect to each of the fundamental parameters, which is shown in Fig. 9. Note 
that by far, the SNR parameter p has the greatest effect on capacity, followed by the excess SNR parameter y. The 
blending fraction p and skewness difference A play a lesser role. 

The Jacobian was evaluated and used to determine the E for each physical parameter x. The capacity sensitivity 
with respect to the physical parameters is shown in Fig. 10. 

5. CONCLUSIONS 
We have derived a general formula for the capacity of PPM on a memoryless, soft output channel. This formula 
was evaluated for specific channel models: Gaussian, Webb, and Webb plus Gaussian. In this process, we have 
distilled the multitude of parameters that describe these channels to  two, three, and four fundamental parameters, 
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Figure 9. Capacity sensitivity of 2k-PPM, with respect to fundamental parameters. 
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Figure 10. Capacity sensitivity of 2”PPM with respect to physical parameters. 

respectively. The capacity of the optical channel expressed a function of bit-SNR is similar to what we see on the 
RF channel, with a brick-wall limit at -1.59 dB. 

In conjunction with a Jacobian matrix that describes the relationship between four fundamental parameters and 
ten physical parameters, we determined the sensitivity of the capacity with respect to  any of the four fundamental 
parameters and any single physical parameter. 

The capacity was found to  be most sensitive to the primary SNR parameter p, with the other three fundamental 
parameters playing lesser roles. The overall relative importance of the physical parameters, with respect to capacity 
sensitivity, was found to be fairly consistent. The physical parameters, in order of influence, are: the signal intensity, 
the quantum efficiency, the excess noise factor, the background intensity, the gain, the slot width, the equivalent 
noise temperature, the load resistance, the surface leakage current, and the bulk leakage current. 
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